匿名
未登录
创建账户
登录
ENPG_Wiki
搜索
查看“非线性系统最优估计”的源代码
来自ENPG_Wiki
名字空间
页面
讨论
更多
更多
页面选项
阅读
查看源代码
历史
←
非线性系统最优估计
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
== 离散非线性系统 == === 问题表述 === ==== 状态方程和观测方程 ==== 假设离散非线性系统的状态方程和观测方程为 \[ \begin{align} \vec{x}_{k+1} & = \vec{f}(\vec{x}_{k},\vec{u}_k,k) + \vec{w}_{k+1} \\ \vec{z}_k & = \vec{h}(\vec{x}_k,k) + \vec{v}_k \end{align} \] 其中,$$\vec{x} _ k$$为$$n$$维状态向量,$$\vec{u}_k$$为$$r$$维控制向量,$$z_k$$为$$m$$维观测向量。$$\vec{w}_k,\vec{w}_k,\vec{x}_0$$为独立的随机变量。$$\vec{w}_k$$和$$\vec{v}_k$$ 分别为$$n$$,$$m$$维噪声(一般考虑是零均值高斯白噪声),其概率密度分别为$$P_w(\vec{w}_k)$$和$$P_v(\vec{v}_k)$$。初始状态$$\vec{x}_0$$的概率密度函数为$$P_x(\vec{x}_k)$$。 假设在$$k$$时刻已经获得实时信息$$\mathrm{Z}^*(k)=\{\mathrm{Z}_1^k,\mathrm{U}_1^{k-1}\}$$,其中$$\mathrm{Z}_1^k=\{\vec{z}_1,\cdots,\vec{z}_k\}, \mathrm{U}_1^k=\{\vec{u}_1,\cdots,\vec{u}_k\}$$ ==== 贝叶斯估计 ==== 贝叶斯估计,即在给定$$k$$时刻实时信息$$\mathrm{Z}^*(k)$$的情况下,求出状态$$\vec{x}_k$$的条件概率密度 \[ p(\vec{x}|\mathrm{Z}^*(k)) \] $$\vec{x}_k$$的条件期望也就是在实时信息下$$\vec{x}_k$$的最小方差估计,即 \[ $$\newcommand{\d}{\mathrm{d}}$$ \hat{\vec{x}}_{k|k} = E[\vec{x}_k|\mathrm{Z}^*(k)] = \int_{-\infty}^\infty \vec{x}_k p(\vec{x}|\mathrm{Z}^*(k)) \d\vec{x}_k \] 而估计误差$$ \tilde{\vec{x}}_k \equiv \vec{x}_k - \hat{\vec{x}}_{k|k} $$ 的条件协方差矩阵为 \[ \begin{align} \mathrm{P}_{k|k} = Cov[\tilde{\vec{x}}_k,\tilde{\vec{x}}_k|\mathrm{Z}^*(k)] = \int_{-\infty}^\infty (\vec{x}_k - \hat{\vec{x}}_{k|k})(\vec{x}_k - \hat{\vec{x}}_{k|k})^T p(\vec{x}|\mathrm{Z}^*(k)) \d\vec{x}_k \end{align} \] 问题归结于,如何递推地求出条件概率密度$$p(\vec{x}|\mathrm{Z}^*(k))$$ === 求解 === 首先根据状态方程和测量方程有: \[ \begin{align} &p(\vec{x}_{k+1}|\vec{x}_{k},\vec{u}_{k}) = p_w(\vec{x}_{k+1} - \vec{f}(k,\vec{x}_k,\vec{u}_k)) \\ &p(\vec{z}_{k+1}|\vec{x}_{k+1}) = p_v(\vec{z}_{k+1} - \vec{h}(k+1,\vec{x}_{k+1})) \end{align} \] 当进行到第$$k$$步,我们有了$$ \mathrm{Z}^{*}(k) $$和$$ \vec{u}_{k} $$后,可以得到$$\vec{x}_{k+1},\vec{z}_{k+1}$$的条件概率('''预测'''): \[ \begin{align} &p(\vec{x}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_{k}) = \int_{-\infty}^\infty p_w(\vec{x}_{k+1} - \vec{f}(k,\vec{x}_k,\vec{u}_k)) p(\vec{x}_{k}|\mathrm{Z}^{*}(k)) \d\vec{x}_{k} \\ &p(\vec{z}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_k) = \int_{-\infty}^\infty p_v(\vec{z}_{k+1}-\vec{h}(k+1,\vec{x}_{k+1}))p(\vec{x}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_{k}) \d\vec{x}_{k+1} \end{align} \] 在进一步得到测量值$$\vec{z}_{k+1}$$后,可以得到$$\vec{x}_{k+1}$$的后验概率: \begin{align} \label{eq:BayesFilter} { \begin{aligned} p(\vec{x}_{k+1}|\mathrm{Z}^{*}(k+1)) &= \frac{p(\vec{x}_{k+1},\vec{z}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_k)} {p(\vec{z}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_k)} \\ &=\frac{p_v(\vec{z}_{k+1} - \vec{h}(k+1,\vec{x}_{k+1})) p(\vec{x}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_{k})} {\int_{-\infty}^\infty p_v(\vec{z}_{k+1}-\vec{h}(k+1,\vec{x}_{k+1}))p(\vec{x}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_{k}) \d\vec{x}_{k+1} } \end{aligned} } \end{align} 上式被称为'''贝叶斯滤波公式''',虽然是直观精确的表达式,但其中每一步的积分都是非常困难的,很可能得不到解析表达式,因而没有重要的应用价值。 == 连续非线性系统 == ====== 状态方程和观测方程 ====== == 连续—离散型系统 == 状态方程和观测方程
返回至“
非线性系统最优估计
”。
导航
导航
首页
根目录
最近更改
随机页面
全部页面
如何编辑
MediaWiki帮助
Wiki工具
Wiki工具
特殊页面
页面工具
页面工具
用户页面工具
更多
链入页面
相关更改
页面信息
页面日志