非线性系统最优估计

来自ENPG_Wiki

离散非线性系统最优估计

问题表述

状态方程和观测方程

假设离散非线性系统的状态方程和观测方程为

\[ \begin{align} \vec{x}_{k+1} & = \vec{f}(\vec{x}_{k},\vec{u}_k,k) + \vec{w}_{k+1} \\ \vec{z}_k & = \vec{h}(\vec{x}_k,k) + \vec{v}_k \end{align} \]


其中,$$\vec{x} _ k$$为$$n$$维状态向量,$$\vec{u}_k$$为$$r$$维控制向量,$$z_k$$为$$m$$维观测向量。$$\vec{w}_k,\vec{w}_k,\vec{x}_0$$为独立的随机变量。$$\vec{w}_k$$和$$\vec{v}_k$$ 分别为$$n$$,$$m$$维噪声(一般考虑是零均值高斯白噪声),其概率密度分别为$$P_w(\vec{w}_k)$$和$$P_v(\vec{v}_k)$$。初始状态$$\vec{x}_0$$的概率密度函数为$$P_x(\vec{x}_k)$$。

假设在$$k$$时刻已经获得实时信息$$\mathrm{Z}^*(k)=\{\mathrm{Z}_1^k,\mathrm{U}_1^{k-1}\}$$,其中$$\mathrm{Z}_1^k=\{\vec{z}_1,\cdots,\vec{z}_k\}, \mathrm{U}_1^k=\{\vec{u}_1,\cdots,\vec{u}_k\}$$

贝叶斯估计

贝叶斯估计,即在给定$$k$$时刻实时信息$$\mathrm{Z}^*(k)$$的情况下,求出状态$$\vec{x}_k$$的条件概率密度 \[ p(\vec{x}|\mathrm{Z}^*(k)) \]

$$\vec{x}_k$$的条件期望也就是在实时信息下$$\vec{x}_k$$的最小方差估计,即 $$\newcommand{\d}{\mathrm{d}}$$ \[ \hat{\vec{x}}_{k|k} = E[\vec{x}_k|\mathrm{Z}^*(k)] = \int_{-\infty}^\infty \vec{x}_k p(\vec{x}|\mathrm{Z}^*(k)) \d\vec{x}_k \] 而估计误差$$ \tilde{\vec{x}}_k \equiv \vec{x}_k - \hat{\vec{x}}_{k|k} $$ 的条件协方差矩阵为

\[ \begin{align} \mathrm{P}_{k|k} = Cov[\tilde{\vec{x}}_k,\tilde{\vec{x}}_k|\mathrm{Z}^*(k)] = \int_{-\infty}^\infty (\vec{x}_k - \hat{\vec{x}}_{k|k})(\vec{x}_k - \hat{\vec{x}}_{k|k})^T p(\vec{x}|\mathrm{Z}^*(k)) \d\vec{x}_k \end{align} \]

问题归结于,如何递推地求出条件概率密度$$p(\vec{x}|\mathrm{Z}^*(k))$$


求解

首先根据状态方程和测量方程有:

\[ \begin{align} &p(\vec{x}_{k+1}|\vec{x}_{k},\vec{u}_{k}) = p_w(\vec{x}_{k+1} - \vec{f}(k,\vec{x}_k,\vec{u}_k)) \\ &p(\vec{z}_{k+1}|\vec{x}_{k+1}) = p_v(\vec{z}_{k+1} - \vec{h}(k+1,\vec{x}_{k+1})) \end{align} \] 当进行到第$$k$$步,我们有了$$ \mathrm{Z}^{*}(k) $$和$$ \vec{u}_{k} $$后,可以得到$$\vec{x}_{k+1},\vec{z}_{k+1}$$的条件概率(预测): \[ \begin{align} &p(\vec{x}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_{k}) = \int_{-\infty}^\infty p_w(\vec{x}_{k+1} - \vec{f}(k,\vec{x}_k,\vec{u}_k)) p(\vec{x}_{k}|\mathrm{Z}^{*}(k)) \d\vec{x}_{k} \\ &p(\vec{z}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_k) = \int_{-\infty}^\infty p_v(\vec{z}_{k+1}-\vec{h}(k+1,\vec{x}_{k+1}))p(\vec{x}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_{k}) \d\vec{x}_{k+1} \end{align} \]

在进一步得到测量值$$\vec{z}_{k+1}$$后,可以得到$$\vec{x}_{k+1}$$的后验概率: \[ \begin{align} \label{eq:BayesFilter} { \begin{aligned} p(\vec{x}_{k+1}|\mathrm{Z}^{*}(k+1)) &= \frac{p(\vec{x}_{k+1},\vec{z}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_k)} {p(\vec{z}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_k)} \\ &=\frac{p_v(\vec{z}_{k+1} - \vec{h}(k+1,\vec{x}_{k+1})) p(\vec{x}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_{k})} {\int_{-\infty}^\infty p_v(\vec{z}_{k+1}-\vec{h}(k+1,\vec{x}_{k+1}))p(\vec{x}_{k+1}|\mathrm{Z}^{*}(k),\vec{u}_{k}) \d\vec{x}_{k+1} } \end{aligned} } \end{align} \]

上式被称为贝叶斯滤波公式,虽然是直观精确的表达式,但其中每一步的积分都是非常困难的,很可能得不到解析表达式,因而没有重要的应用价值。

连续非线性系统最优估计

假设系统的状态方程和观测方程为: \[ \begin{align} & \dot{\vec{x}}(t) = \vec{f}(\vec{x}(t),t)+\mathrm{g}(\vec{x}(t),t) \vec{w}(t) \\ & \vec{z}(t) = \vec{h}(\vec{x}(t),t) + \vec{v}(t) \end{align} \] 其中$$\vec{w}(t)$$和$$\vec{v}(t)$$均为零均值高斯白噪声,且与初始状态$$\vec{x}(t_0)$$不相关,即

\[ \begin{align} & E[\vec{w}(t)] = E[\vec{v}(t)] = 0 \\ & \Cov[\vec{w}(t),\vec{w}(\tau)] = \mathrm{Q}(t)\delta(t-\tau)\\ & \Cov[\vec{v}(t),\vec{v}(\tau)] = \mathrm{R}(t)\delta(t-\tau) \\ & \Cov[\vec{w}(t),\vec{v}(\tau)] = \Cov[\vec{w}(t),\vec{x}(t_0)] = \Cov[\vec{v}(t),\vec{x}(t_0)] = 0 \end{align} \]

状态方程和观测方程也可以改写微分形式: \[ \begin{align} \label{dynamic} & \d\vec{x}(t) = \vec{f}(\vec{x}(t),t)\d t+\mathrm{g}(\vec{x}(t),t) \d \vec{N}(t) \\ \label{measure} & \d\vec{y}(t) = \vec{h}(\vec{x}(t),t)\d t + \d\vec{M}(t) \end{align} \]

其中$$\vec{N}(t),\vec{M}(t),\vec{y}(t)$$满足: \[ \begin{align} & E[\d\vec{M}(t)] = 0, \Var[\d\vec{M}(t)] = \vec{R}(t)\d t \\ & E[\d\vec{N}(t)] = 0, \Var[\d\vec{N}(t)] = \vec{Q}(t)\d t \\ & \d\vec{y}(t) = \vec{z}(t)\d t \end{align} \]

其中\ref{dynamic}是有名的随机微分方程,解为Fokker-Planck方程,于是

\[ \begin{align} p&(\vec{x},t+\d t|\mathrm{Y}^*(t+\d t))- p(\vec{x},t|\mathrm{Y}^*(t)) \\ =& p(\vec{x},t+\d t|\mathrm{Y}^*(t+\d t))-p(\vec{x},t+\d t|\mathrm{Y}^*(t))+ p(\vec{x},t+\d t|\mathrm{Y}^*(t))- p(\vec{x},t|\mathrm{Y}^*(t)) \\ \label{FP_term} =&{\color{blue}{ - \sum_i \frac{\partial}{\partial x_i} [f_i(\vec{x},t)p(\vec{x},t|\mathrm{Y}^*(t))] \d t + \frac{1}{2} \sum_{ij} \frac{\partial^2}{\partial x_i\partial x_j}\{\mathrm{g(\vec{x}(t),t)}\mathrm{Q(t)}\mathrm{g(\vec{x}(t),t)}^T p(\vec{x},t|\mathrm{Y}^*(t)) \} \d t }} \\ \label{Bayes_term} & \color{green}{+ (\vec{h}(\vec{x},t) - E(\vec{h}(\vec{x},t | \mathrm{Y}^*(t)) )^T \mathrm{R}^{-1}(\d\vec{y}(t) - E(\vec{h}(\vec{x},t | \mathrm{Y}^*(t))\d t ) p(\vec{x},t|\mathrm{Y}^*(t)) \} \d t } \end{align} \]

其中\ref{FP_term} 项就对应Fokker-Planck方程,\ref{Bayes_term}项是新观测的信息$$ \d\vec{y}(t) $$带来的,可通过贝叶斯条件概率公式取$$ \d t\to0 $$得到,这一项的证明见(Kushner H J,1964)

如果能通过上式求得$$p(\vec{x}(t),t|\mathrm{Y}^*(t))$$,则可以得到状态$$\vec{x}(t)$$的最小方差估计也就是关于$$\mathrm{Y}^*(t)$$的条件均值。

扩展卡尔曼滤波

连续-离散型系统

实际问题中得到的系统状态模型往往是连续的,而测量方差是离散的,即 \[ \begin{align} \dot{\vec{x}}(t) = \vec{f}(\vec{x}(t),t) + \vec{w}(t) \\ \vec{z}_k = \vec{h}_k(\vec{x}(t_k)) + \vec{v}_k \end{align} \]

由于方程的非线性,导致概率密度函数非常复杂,计算$$p(x,t)$$往往是不现实的,为了得到实用的估计算法,应该采用绕过$$p(x,t)$$来计算$$\vec{x}(t)$$的条件均值和误差协方差矩阵的方法。扩展卡尔曼滤波就是将$$\vec{f},\vec{h}$$在适当位置进行泰勒展开的方法。

先对$$ \vec{f}(\vec{x}(t),t) $$在当前条件均值$$\hat{\vec{x}}(t)$$处泰勒展开: \[ \begin{align} \vec{f}(\vec{x},t) = \vec{f}(\hat{\vec{x}},t) +\frac{\partial f}{\partial x}\bigg|_{\hat{\vec{x}}}(\vec{x} - \hat{\vec{x}})+ \cdots \end{align} \] 记 $$ \mathrm{F}(\hat{\vec{x}},t) = \frac{\partial \vec{f}(\vec{x},t)}{\partial \vec{x}(t)}\bigg|_{\hat{\vec{x}}}$$,其元素$$ \mathrm{F}(\hat{\vec{x}},t)_{ij} = \frac{\partial f_i(\vec{x},t)}{\partial x_j(t)}\bigg|_{\hat{\vec{x}}}$$

扩展卡尔曼滤波一般将泰勒展开保留至一阶(保留更改多项可推导出更高阶更精确的滤波器,如二阶滤波器),于是对$$t\in[t_{k-1},t_k)$$,也就是两次测量间的动力学阶段,有

\[ \begin{align} \dot{\hat{\vec{x}}}(t) &= \vec{f}(\hat{\vec{x}},t),t\in[t_{k-1},t_k) \\ \dot{\mathrm{P}}(t) &= E[\hat{\vec{x}}(t)-\vec{x}(t)][\hat{\vec{x}}(t)-\vec{x}(t)]^T\\ &= \mathrm{F}(\hat{\vec{x}},t)\mathrm{P}(t) + \mathrm{P}(t)\mathrm{F}^T(\hat{\vec{x}},t) + \mathrm{Q}(t), t\in[t_{k-1},t_k) \end{align} \]

下面建立测量后的修正方程,

Unscented卡尔曼滤波

粒子滤波